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We have performed molecular-dynamics simulations of displacement cascades in copper in order to inves-
tigate the nonequilibrium ultra-short-time damage and to evaluate the possibility of observing it experimentally
in situ �e.g., in a pump/probe laser experiment�. The atomic trajectories have been analyzed by calculating their
x-ray diffraction patterns as a function of time. The results show that an integrated x-ray intensity can indeed
be used to evidence the irradiation effects. Even though the number of Frenkel defects is large, the main effect
of the irradiation showing up in the x-ray intensities at ultrashort times is an important alteration of the lattice
vibrations. On the basis of these results, a pump/probe setup is proposed.
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I. INTRODUCTION

Present-day laser equipment permits to obtain very short
and intense laser pulses, which can be used to produce many
kinds of short and intense bursts of secondary particles with
a broad spectrum of energies. These secondary particles can
be, e.g., neutrons, electrons, protons, or x-rays. Ultrashort
x-ray pulses are usually produced in the interaction of an
intense visible ultrashort laser pulse with a hot and dense
plasma, using either solid or gaseous targets. Depending pri-
marily on the target atomic number, the x-ray spectrum can
consist of sharp spectral lines �e.g., K� radiation of light
elements1�, broader unresolved transition arrays or even con-
tinuous Brehmsstrahlung radiation.2 In the most recent ex-
periments, where the laser-plasma interaction occurs in the
relativistic regime, synchrotron radiation of the laser-driven
electrons can produce high-intensity broadband emission in
the 1–10 keV photon energy range, the so-called “betatron
radiation.”3 Likewise, in this relativistic regime, femtosecond
pulses of high-energy electrons and protons �the latter with
energies up to tens of MeV� can be obtained.4,5 Their energy
spectrum is usually continuous, though the latest develop-
ments using reduced-mass targets show that also monochro-
matic particle beams can be obtained. A specific feature of all
such laser-driven pulsed particle sources is that the high-
energy radiation emission is precisely timed with the driving
laser pulse, opening the possibility of “pump-probe” experi-
ments using such sources.

When a high-energy proton impinges onto a solid target it
produces a displacement cascade. Many molecular-dynamics
�MD� simulations have been performed to study the physics
of such displacement cascades in various solids,6–8 but on
certain issues the confrontation between theory and experi-
ment has remained rather indirect. In fact, the simulations
show that at short times a displacement cascade produces a
large number of Frenkel defects,6,8,9 but these large numbers
have never been observed experimentally, as the vast major-
ity of these defects only exist for fleeting moments. They
recombine very quickly, e.g., within 10 ps, such that only a
tiny fraction of the initially created pairs survive this self-
annealing process by the time one tries to observe them with
different equipment. Similarly, the surplus energy the im-
pinging particle puts into the sample, creating the cascade,

which is characterized by a set of larger instantaneous local
values for �u2� over a limited spatial extent, gradually dif-
fuses away with time. To have a chance to observe displace-
ment cascades and their Frenkel defects one must therefore
find a way to probe a cascade in situ. Ultrashort laser pulses
in a pump/probe setup provide exactly the combination of
experimental facilities needed to observe the cascades. The
idea is thus to produce both a pulsed proton beam and a
pulsed x-ray beam from two derivations of the femtosecond-
pulsed laser beam. Let us assume that we are able to produce
a pulsed proton beam of more or less well-defined energy.
We assume also that we are able to determine exactly at
which time t0 each pulse will reach the solid target. By vary-
ing the path length of the laser beam derivation that produces
the x-ray pulses one can then choose the delay time t corre-
sponding to the moment in time t0+ t at which we probe the
cascade. Hence, we could probe the time evolution of the
cascade and the Frenkel effects over the whole time span
during which they pop in and out of existence.

The present paper reports on a MD simulation of such a
difficult type of experiment. The work has thus really to be
situated within the context of the emerging experimental pos-
sibilities mentioned above, rather than within a context of
deriving results about displacement cascades �for which the
existing literature is already very complete�. We simulate dis-
placement cascades in a copper single crystal as produced by
the impact of a proton with a kinetic energy Kp of 49.2 keV.
This value corresponds to a kinetic energy KCu of 3 eV for
the recoiling copper atom in a head-on proton collision, as
calculated from the relation:10

KCu = 4Kp
MpMCu

�Mp + MCu�2cos2 � , �1�

where the angle �=0 in a head-on collision; Mp and MCu are
the masses of the incident and target particles, respectively.
Multiple recoils within a single cascade, corresponding to the
impinging proton hitting two atoms in the lattice in succes-
sion have not been considered. Also possible interactions be-
tween two displacement cascades that could be produced
more or less simultaneously in an extremely high proton-flux
have not been considered. The momentum of the proton has
been assumed to be along the y direction, which corresponds
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to the �010� direction of the copper single crystal. Simulta-
neously, we have calculated the x-ray diffraction diagram of
the simulation box at different times t0+ t after the simulated
proton impact at time t0. Hence, we have monitored the time
evolution of this diffraction diagram while the cascade de-
velops. This combination of direct-space and reciprocal-
space data should in principle allow us to learn how the
diffraction spectra have to be interpreted. We anticipate that
this could be a valuable aid for experimental-protocol design,
and give added value to the experimental data. In order to
avoid confusion, it should be noted that the time dependence
of the elastic intensity is not a dynamical signal. In order to
obtain a dynamical signal, one must correlate the Fourier
amplitudes at two different times.

II. SIMULATION AND ANALYSIS OF THE ATOMIC
TRAJECTORIES

A. Molecular dynamics

The MD �Refs. 6–8, 11, and 12� computations have been
performed in the microcanonical ensemble. The modeling of
the copper interactions relies on an empirical n-body poten-
tial of the tight-binding type that reproduces satisfactorily its
physical properties.13–15 The simulated system is a cubic box
of size L3 �L=14� containing 10 976 copper atoms. Periodic
boundary conditions �PBC� are employed and the time step
is equal to 5�10−16 s. We did not introduce any damping of
the motion of the boundary atoms.16 In fact, we did not want
that the tool used to regulate the number of artifacts that
might occur in our simulations �due to the PBC�, could in-
troduce itself some additional perturbation. We therefore
have limited our means of control to varying the box size.
Kinetic disturbances may, thus re-enter the MD box unless
its size is large enough and the temperature rises due to the
kinetic energy dissipated by the primary knock-on atom
�PKA�. In order to avoid finite-size effects in the calculations
of the x-ray intensities, we have considered the MD box as
embedded into a large perfect cubic geometrical crystal �see
Sec. II B�.

Twenty-one independent equilibrium configurations of the
copper crystal �decorrelated by a time evolution of 10 ps�
have been generated at a temperature of 302 K and a pres-
sure close to zero for a lattice parameter of 3.6358 Å. The
zero of the time scale of the 21 ensuing irradiation simula-
tions corresponds to these equilibrium configurations. The
displacement cascades are initiated at t=0.005 ps by the
transfer of kinetic energy to a single copper atom. This simu-
lates a recoil. We have not introduced statistical distributions
for the initial recoil parameters of the PKA. In all 21 simu-
lation runs the momentum transfer has always been aligned
along the �010� direction of the FCC lattice and the kinetic
energy transfer has always been given the same constant
value. This unusual choice of initial conditions6 permits to
reduce the complexity of the analysis of the x-ray diffraction
patterns by only studying the �010� direction. This is justified
in a preliminary study wherein the only aim is to explore the
experimental possibilities to observe the ultra-short-time
damage in situ. The statistical distribution of the PKA recoil

parameters will be taken into account in a future work in-
cluding the experiment.

As the number of atoms in the simulation box is small
there is a complete loss of any structure in the system if the
knock-on energy is taken too large. The energy transferred to
the copper atom in our simulations has therefore been fixed
at the value of 3 keV in order to avoid such problems.

B. X-ray intensity calculations

The x-ray intensities in the present paper are expressed in
physical units. This means that the wave vector q is ex-
pressed by the formula q=2� /�, as opposed to the expres-
sion q=1 /� often used in crystallography, where tradition-
ally units 2� are being used. Here, 2� is the scattering angle,
and � the wavelength of the x rays. We note the transfer of
wave vector occurring in the scattering process as Q=qout
−qin. We have adopted a special approach for the calculation
of the x-ray intensities I. It is well known that they are given
by I= �F�Q��2, where F�Q� is the Fourier amplitude. The
approach permits to avoid truncation problems and to obtain
results that are rigorously exact.

For the calculation of the Fourier amplitude F�Q� of a
one-dimensional periodic lattice of N atoms along e.g., the
x-axis, we restrict ourselves to a set S of Q values Q
=2�k /Na, where a is the lattice parameter and k is an inte-
ger. The crystal lattice points are situated in xj = ja, where j is
an integer. We obtain then in a straightforward manner,17

F�Q� = �
j=1

N

eiQxj = N�
n

��Q − QB� , �2�

where QB=n�2� /a� and n runs over Z. This means that there
is a reciprocal lattice of Bragg peaks with weight N in QB.
For the remaining Q values in the set S, the Fourier ampli-
tude F�Q� is zero, exactly as would be the case in an infinite
perfect crystal in all points of reciprocal space that do not
correspond to the location of a Bragg peak. But for the Q
values that do not belong to the restricted set S of multiples
of 2� /Na, the algebra no longer reproduces the correct zero
result that would apply for an infinite perfect crystal. This is
hardly surprising, as we have not calculated the Fourier
transform of an infinite crystal. In fact, the algebra is exact
for a finite crystal. Our problem is rather that we want to
remove the finite-size effects from our calculations. The al-
gebra shows that we can achieve this by making our calcu-
lations on the set S. This result is easily generalized to three
dimensions.

This calculation illustrates why fast Fourier transform
�FFT� programs cannot be used without observing a number
of caveats. They can, e.g., give wrong answers for the dif-
fraction spectrum of a periodic lattice if the period of the
FFT is not adapted to the lattice period of the crystal, such
that the points where the Fourier transform is calculated are
not on the set S. The FFT is then subject to finite-size trun-
cation problems. One must therefore be careful about inter-
preting the significance of tails in Bragg peaks in a spectrum
obtained from a FFT. Also a number of numerical values for
the dimensions of the simulation box have to be excluded in
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order to avoid malfunctioning of the FFT. Given the rather
small dimensions of our simulation boxes this would have
been a severe limitation.

We have therefore adopted the different approach de-
scribed above. We consider the cubic simulation box B of
size L3 as embedded into a large, perfect cubic geometrical
crystalline lattice G of size D3. That is, we mentally cut a
cubic hole H of dimensions L3 into the geometrical crystal
with exactly the same size L3 as the simulation box, and
again mentally, enter the simulation box into this hole. This
has to be done carefully such that one does not introduce any
discontinuity in the average interatomic distances across the
boundaries between G /H and B. For example, in order to
avoid lattice parameter mismatch problems that could be in-
duced by the variation in the lattice parameter with tempera-
ture, the simulations have been carried out at constant vol-
ume. The Fourier transform to be calculated is then obtained
as F�G�−F�H�+F�B�. Both F�G� and F�H� can be calcu-
lated analytically, and the rigorous result can be coded di-
rectly into the program. The ensuing results are exact: for
example, the Bragg peaks contained in the Fourier transform
F�G�, and calculated according to Eq. �2�, are pure Dirac
measures without any tails. The simulation box B is suffi-
ciently small to allow for a calculation of its Fourier trans-
form F�B� that is purely based on its definition. Hence we
avoid this way the truncation effects inherent to the FFT
mentioned above. Actually, we perform these calculations on
the atomic positions. A real crystal is the convolution of its
set of atomic positions �G \H��B with an atomic decoration.
In our case this atomic decoration consists of copper atoms.
In the Fourier transform, this means that we must multiply
the Fourier transform of this set with the atomic form factor
of the copper atom. The calculation of this atomic form fac-
tor has been performed using the method and the tabular
values given in reference.18 By varying the size D3 of the
large crystal, we can actually simulate the volume fraction of
the crystal that is irradiated in the real experiment. We may
note that the copper lattice is not a Bravais lattice and that
this leads to extinction rules for some Bragg peaks, which we
have calculated. In fact, the FCC unit cell contains four cop-
per atoms and the lattice parameter that has been used is
3.6358 Å.

One effect of using PBC is rather important for the calcu-
lations of the Fourier transform. The energy and momentum
we confer to the PKA are conserved quantities. Eventually
they become redistributed over all the atoms of the simula-
tion box. This results in a uniform motion in the y-direction
of the center of mass of the simulated lattice. As the energy
conferred to this single atom is large on the scale of the
lattice dynamics and as the number of atoms in the simula-
tion box is rather limited, this effect becomes readily observ-
able. One by one the lattice planes reach the “upper” bound-
ary of the box in the y direction. There they “jump”—from
the viewpoint of the calculation of the Fourier transform to
the “lower” boundary in the y direction, due to the PBC. The
phase factor in the Fourier transform that corresponds to this
translational jump interferes with the phase factor of the Fou-
rier transform of the perfect crystal by the time we square the
Fourier amplitudes in order to obtain the x-ray intensities.
This introduces a severe error into the calculated intensities

under the form of oscillations in the time dependence, which
does not correspond to any physical reality. This uniform
center-of-mass motion has therefore been corrected for in the
analysis of the computed data.

C. Integration of x-ray intensities

Since the intensities are weak we have integrated them
along the line at qz=0.2 Å−1 and qx=0 Å−1. The choice of
qz permits to avoid that the strong intensity of the Bragg
peaks outweighs the intensities of the small signal we are
interested in. The intensities are stored as a function of qy for
each selected time of the MD trajectory. The integration is
then performed along the qy axis.

D. Frenkel defects

An atomic site is defined by considering a spherical vol-
ume centered on a geometrical regular lattice site. The value
of the radius of the sphere is chosen in such a way that a
moving atom leaving a regular site is discriminated from a
vibrating atom with a large magnitude at the equilibrium
temperature. When this volume is empty there is a vacancy
on the site. If an atom does not belong to any atomic site it is
an interstitial atom. Such a pair of an interstitial atom and a
vacancy defines a Frenkel defect. The actual value of the
radius of the sphere in the simulations was 0.84 Å. This
value can be compared to the vibration amplitude �u2�1/2

=0.118 Å at the equilibrium temperature finally reached by
the irradiated system, which is 600 K. We have developed a
code, based on this definition of the Frenkel defects, to count
them in direct space along the MD trajectories.

E. Further analysis

The code permits to remove a posteriori the Frenkel de-
fects from a given configuration by putting the interstitials on
an empty lattice site. The off-Bragg Fourier intensity of the
resulting manipulated configuration yields the contribution
of the phonons to the x-ray signal. The same code permits
also to “kill” a posteriori the phonon dynamics of all on-site
atoms in a configuration by putting them on the geometrical
lattice position of the site they are “on” in the configuration.
The off-Bragg Fourier intensity of the resulting manipulated
configuration yields the contribution of the Frenkel defects to
the x-ray signal.

III. RESULTS AND DISCUSSION

A. X-ray intensities

Figure 1�a� shows the x-ray diffraction intensities in the
qz=0 plane obtained from the MD simulation of the 600 K
nonirradiated system. The Bragg peaks can be clearly distin-
guished. Their intensities are modulated by the Debye-Waller
factor. On this intensity scale the thermal diffuse scattering
due to phonons or lattice defects is not visible. Therefore, we
show on Fig. 1�b� the intensities from the same simulation in
the nearby reciprocal lattice plane qz=0.2 Å−1 where the ab-
sence of Bragg peaks permits to visualize the lattice vibra-
tions on a full scale.
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These data can be directly compared with those of Fig.
1�c�. Fig. 1�c� displays the x-ray diffraction intensities in the
same reciprocal lattice plane qz=0.2 Å−1 from a snapshot at
0.60 ps after knock-on in the MD simulation of the 300 K
irradiated system. We must stress that the time scale of 0.60
ps selected here is much shorter than in traditional simula-
tions. The intensity scales of Figs. 1�b� and 1�c� are identical.

From the comparison it is obvious that there is additional
diffuse scattering intensity in the irradiated system.

This significant extra intensity is the x-ray diffraction fin-
gerprint of irradiation effects in a metal and as such could be
used to monitor them. However, in a real experiment the
lattice vibrations from the nonirradiated part of the crystal
will be superimposed on them. In order to increase the sta-
tistics, we have integrated the signal in this plane with re-
spect to qy along the line qx=0. All the results presented
hereafter will refer to this particular type of integrated
intensities.

B. Integrated x-ray intensities

The result from these integrations as a function of the
simulation time is reported in Fig. 2. As mentioned above,
the zero of the time scale corresponds to an equilibrium con-
figuration while the knock-on takes place at t=0.005 ps. All
the data are averages over 21 independent simulation runs.
The equilibrium temperature eventually reached by the irra-
diated system is close to 600 K. We have therefore also per-
formed 21 equilibrium MD simulations on a nonirradiated
system for comparison. The associated integrated x-ray
intensities are also reported in Fig. 2.

It is obvious that the time dependence of the intensity in
the nonirradiated system is featureless and that the intensities
are much lower than those of the oscillating signal from the
irradiated system. Hence, this oscillating time dependence is
characteristic of an irradiated sample.

C. Rôle of the Frenkel defects

In order to understand the origin of this large oscillating
signal we have identified the positions of all vacancies and
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FIG. 1. Three-dimensional reciprocal-space plots of the normal-
ized calculated x-ray intensity I vs �qx, qy� for three nonaveraged
single-history runs. Each tick on the qx and qy axes corresponds to
1 Å−1. The temperature of the nonirradiated system was chosen
close to the final equilibrium temperature of the irradiated system
for comparison. �a� Bragg peaks in the plane qz=0 Å−1 for the
nonirradiated system at 600 K. �b� Intensities in the off-Bragg plane
qz=0.2 Å−1 for the same nonirradiated system at 600 K. �c� Inten-
sities in the same off-Bragg plane qz=0.2 Å−1 for the irradiated
system at 300 K after a relaxation time of 0.60 ps.
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FIG. 2. Time evolution of the integrated x-ray intensities �aver-
aged over 21 independent runs� for the system irradiated at 300 K
�full line� and for the nonirradiated system at 600 K �dotted line�.
The temperature of the nonirradiated system was chosen close to
the final equilibrium temperature of the irradiated system for com-
parison. A decomposition of the integrated intensities of the irradi-
ated system into two components is also shown: the thick line cor-
responds to the contribution from the off-site atoms which give rise
to the Frenkel defects whereas the full circles represent the comple-
mentary intensity from the on-site atoms.
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interstitials �the off-site atoms�, i.e., of all Frenkel pairs. Af-
ter this, we have repositioned artificially in each configura-
tion all other atoms on geometrical lattice sites. This enabled
us to calculate the contribution of the Frenkel defects to the
oscillating signal. This contribution is also displayed in Fig.
2 and it can be seen to be very small. Only up to 1 ps does it
represent some observable intensity. The contribution from
the on-site atoms was obtained alternatively by repositioning
artificially all off-site atoms on the open lattice sites. It co-
incides almost perfectly with the total integrated x-ray inten-
sity. In summary, we �i� conclude that the contribution of the
Frenkel defects can be ignored, and �ii� we attribute the os-
cillating signal therefore in terms of lattice vibrations that
have been altered by the developing cascade.

Figure 3 validates further the analysis of the contribution
from the Frenkel defects. It compares the x-ray intensity due
to the Frenkel defects discussed above with the number of
these defects obtained by direct counting along the MD tra-
jectory. In fact, both quantities display exactly the same time
dependence. The small second peak at 1.8 ps is an artifact of
the PBC, as will be discussed in Sec. III E.

D. Long-time scale

Figure 4 displays the behavior of the time dependence of
the integrated x-ray intensities on a much longer time scale
and with a coarser time step than in Fig. 2, for two single
MD runs. Up to 15 ps the signal from the irradiated sample is
significantly larger than the signal from the 600 K nonirradi-

ated system. On the long-time scale however, the intensities
of the two signals become comparable, in agreement with
our statement that the equilibrium temperature reached by
the irradiated system is approximately 600 K.

E. Size effects

We remind the reader that we have made sure that there
are no finite-size effects in the calculation of the Fourier
transforms �see Sec. II B�.

In order to estimate the importance of finite-size effects in
our MD simulations, we have performed calculations for two
additional sizes of the simulations box, viz., one with 8788
�L=13� and one with 13 500 atoms �L=15�. In Fig. 5 we
show the same signal as in Fig. 2 for the three box sizes. The
signal is clearly size dependent.

In Fig. 6 we show the same results after a renormalization
of the time scales with the linear dimension of the simulation
box. On this effective time scale the size dependence no
longer shows up. We interpret this result as evidence that the
x-ray intensities result mainly from acoustic phonons. This
also means that the size effects in our MD simulations are
well understood and that they do not bias our conclusions.

The dispersion curves for the acoustic phonons of a N
�N�N periodic lattice with periodic boundary conditions
are not continuous lines, but rather consist of N�N�N dis-
crete wave vectors with their corresponding frequencies.17 In
the long-wavelength limit, the dispersion relation is linear
�	=vq, where 
 is the speed of sound�, such that the fre-
quencies scale with 1 /N. It is therefore possible to renormal-
ize the time dependences for the various box sizes with N.

Another size effect is illustrated in Fig. 3. The small sec-
ond peak at 1.8 ps is an artifact due to the PBC. This is
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FIG. 3. In the main plot we compare the number of Frenkel
defects �full circles� obtained from direct-space counting with the
integrated x-ray intensities from the off-site atoms �full line�. The
latter is the same signal as shown in Fig. 1 but now on an appro-
priate scale. The arrows identify the scale for each quantity. Both
quantities are averages obtained from 21 independent runs. The
small second peak at 1.8 ps is an artifact of the PBC. The insert
gives the evidence for this. It displays the number of Frenkel de-
fects in this peak for the three different sizes of the MD box used.
The time has been rescaled by the linear dimension of the MD box
as discussed in the text. The full circles correspond to the
10 976-atom cell as in the main plot, the diamonds to the
8 788-atom cell and the open circles to the 13 500-atom cell.
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FIG. 4. Evolution of the integrated x-ray intensities on a long-
time scale of single runs for the system irradiated at 300 K �full
line� and for the nonirradiated system at 600 K �gray line�. As �i�
the curve does not represent an average over independent runs and
as �ii� its portion between 0 and 10 ps has been drawn with a poorer
time resolution than in Fig. 1, the visible intensity variations are not
identical to those observed in Fig. 1. One observes that the irradi-
ated system has reached equilibrium after 30 ps and that this equi-
librium state is characterized by intensity fluctuations similar to
those of the nonirradiated system at 600 K. Hence, the short-time
signal is truly characteristic of the irradiation.
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proved by the time-rescaled data shown in the insert. When
the size of the MD box is increased the height of this peak
decreases. Although this time rescaling is numerically iden-
tical to the one described above for the phonons, its physical
origin is conceptually different. The time rescaling accounts
here for the longer time it takes for the cascade to reach the
boundary, assuming a constant velocity of propagation. The
decrease in the peak when the MD box size is increased
indicates that it is an artifact related to the size of the MD
box. It is due to a part of the cascade leaving the MD box
and re-entering it at the other side due to the PBC.

IV. SUMMARY AND CONCLUSIONS

In summary, we have carried out a MD simulation of
displacement cascades in copper. The atomic trajectories
have been studied by conventional direct-space analysis,
which shows that the number of Frenkel defects is large. In
addition, the trajectories have been characterized by calculat-
ing their x-ray diffraction patterns as a function of time.
These indicate that even at ultrashort times the main effect of
the irradiation is an important perturbation of the lattice
vibrations.

An important result of our work is that the part of the
x-ray intensity that is most representative of the presence of
a developing cascade is not the signal from the Frenkel de-
fects but rather that of the perturbed phonons. The contribu-
tion to the x-ray intensity from the Frenkel defects is in fact
so small with respect to the contribution from the phonons

that it can be neglected. The phonon contribution however,
can be increased in a real experiment by increasing the cas-
cade density. In our data analysis the cascade density is
merely an adjustable parameter. From a given cascade den-
sity onward we will start having several cascades developing
simultaneously and this will further increase the x-ray inten-
sity. The cascades may even interact, and this is something
we could study in the future. All these factors will contribute
to an enhanced phonon contribution in the form of thermal
diffuse scattering. For inelastic x-ray scattering however, the
phonons, whose typical energies lie in the 50 meV regime,
cannot be resolved with the x-ray resolution that prevails in a
laser experiment �eV regime�. This remark also applies in a
nonirradiated system but the coherent pile-up of many simul-
taneous phonons will move the signal out of the elastic res-
olution window, rendering it observable.19 Simultaneously,
the intensity of the elastic peak will decrease. We can expect
this pile-up process also to take place in the irradiated
crystal.

In this case, the ideal protocol for probing the ultrashort
time physics of displacement cascades should be dynamical
rather than static �as in an x-ray diffraction experiment�. The
relevant analysis tool should then be the dynamical Van
Hove correlation function rather than the static correlation
function. It may be noted here that rather than inelastic x-ray
scattering, we could use inelastic light scattering to probe the
cascade. As we have observed in the MD simulations that
phonons are strongly altered by a displacement cascade at
ultrashort times, measuring the phonons optically might be
an interesting experimental approach to in situ observation of
a displacement cascade.
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FIG. 6. The same time evolution of the integrated x-ray inten-
sities as displayed in Fig. 5 after the rescaling of the time axis by
the linear dimension of the MD box discussed in the text. This
rescaling counterbalances the size dependence of the simulation.
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FIG. 5. Time evolution of the integrated x-ray intensities �aver-
aged over 21 independent runs� for the three different sizes of the
MD box used for the irradiated system at 300 K: the full line cor-
responds to the 10 976-atom cell, the full circles to the 8788-atoms
cell and the open circles represent the 13 500-atom cell. The signal
is clearly size dependent.
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